13 research outputs found

    A concept for actuating and controlling a leg of a novel walking parallel kinematic machine tool

    Get PDF
    The scope of this paper is to present a novel method of actuating the legs of a walking parallel kinematic machine tool (WalkingHex) such that the upper spherical joint can be actively driven while walking and remain a free, passive joint while performing machining operations. Different concepts for the number of Degrees of Freedom (DoF) and methods for actuating the chosen concept are presented, leading to a description of a three-wire actuated spherical joint arrangement. The inverse kinematics for the actuation mechanism is defined and a control methodology that accounts for the redundantly actuated nature of the mechanism is explored. It is demonstrated that a prototype of the system is capable of achieving a motion position accuracy within 5.64% RMS. Utilising the concept presented in this paper, it is possible to develop a walking robot that is capable of manoeuvring into location and performing precision machining or inspection operations

    Cyber-Physical System Architecture for Minimizing the Possibility of Producing Bad Products in a Manufacturing System

    Get PDF
    The new industry 4.0 requires the implementation of several cyber-physical systems to increase the level of productivity in a manufacturing system. This chapter proposes an architecture of a generic manufacturing system that requires the use of techniques of agile production, lean manufacturing, and statistical approaches. The combination of the previous techniques will be implemented in the architecture proposed for minimizing the possibility of producing bad products. Thus, the cyber-physical system architecture proposed will optimize the overall system thanks to the implementation of intelligent modules and control strategies. Moreover, 10 proposed actions will be described in detail. These actions can be implemented in cyber-physical systems that take into account five levels

    Real-time method for tip following navigation of continuum snake arm robots

    No full text
    This paper presents a novel technique for the navigation of a snake arm robot, for real-time inspections in complex and constrained environments. These kinds of manipulators rely on redundancy, making the inverse kinematics very difficult. Therefore, a tip following method is proposed using the sequential quadratic programming optimization approach to navigate the robot. This optimization is used to minimize a set of changes to the arrangement of the snake arm that lets the algorithm follow the desired trajectory with minimal error. The information of the Snake Arm pose is used to limit deviations from the path taken. Therefore, the main objective is to find an efficient objective function that allows uninterrupted movements in real-time. The method proposed is validated through an extensive set of simulations of common arrangements and poses for the snake arm robot. For a 24 DoF robot, the average computation time is 0.4 s, achieving a speed of 4.5 mm/s, with deviation of no more than 25 mm from the ideal path

    Health status after invasive or conservative care in coronary and advanced kidney disease

    No full text
    BACKGROUND In the ISCHEMIA-CKD trial, the primary analysis showed no significant difference in the risk of death or myocardial infarction with initial angiography and revascularization plus guideline-based medical therapy (invasive strategy) as compared with guideline-based medical therapy alone (conservative strategy) in participants with stable ischemic heart disease, moderate or severe ischemia, and advanced chronic kidney disease (an estimated glomerular filtration rate of <30 ml per minute per 1.73 m2 or receipt of dialysis). A secondary objective of the trial was to assess angina-related health status. METHODS We assessed health status with the Seattle Angina Questionnaire (SAQ) before randomization and at 1.5, 3, and 6 months and every 6 months thereafter. The primary outcome of this analysis was the SAQ Summary score (ranging from 0 to 100, with higher scores indicating less frequent angina and better function and quality of life). Mixed-effects cumulative probability models within a Bayesian framework were used to estimate the treatment effect with the invasive strategy. RESULTS Health status was assessed in 705 of 777 participants. Nearly half the participants (49%) had had no angina during the month before randomization. At 3 months, the estimated mean difference between the invasive-strategy group and the conservative-strategy group in the SAQ Summary score was 2.1 points (95% credible interval, 120.4 to 4.6), a result that favored the invasive strategy. The mean difference in score at 3 months was largest among participants with daily or weekly angina at baseline (10.1 points; 95% credible interval, 0.0 to 19.9), smaller among those with monthly angina at baseline (2.2 points; 95% credible interval, 122.0 to 6.2), and nearly absent among those without angina at baseline (0.6 points; 95% credible interval, 121.9 to 3.3). By 6 months, the between-group difference in the overall trial population was attenuated (0.5 points; 95% credible interval, 122.2 to 3.4). CONCLUSIONS Participants with stable ischemic heart disease, moderate or severe ischemia, and advanced chronic kidney disease did not have substantial or sustained benefits with regard to angina-related health status with an initially invasive strategy as compared with a conservative strategy
    corecore